洛谷P1525《关押罪犯》

敌人的敌人就是朋友!

题目地址

题目描述

S城现有两座监狱,一共关押着 N 名罪犯,编号分别为 1−N 。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为 c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为 c 的冲突事件。

每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到 S 城 Z 市长那里。公务繁忙的 Z 市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。

在详细考察了 N 名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。

那么,应如何分配罪犯,才能使 Z 市长看到的那个冲突事件的影响力最小?这个最小值是多少?

Input / Output 格式 & 样例

输入格式

每行中两个数之间用一个空格隔开。第一行为两个正整数N,M,分别表示罪犯的数目以及存在仇恨的罪犯对数。接下来的M行每行为三个正整数 a_j,b_j,c_j ,表示 a_j 号和 b_j 号罪犯之间存在仇恨,其怨气值为 c_j 。数据保证 1<aj≤bj≤N,0 < cj≤ 1,000,000,000 ,且每对罪犯组合只出现一次。

输出格式

共 1 行,为 Z 市长看到的那个冲突事件的影响力。如果本年内监狱中未发生任何冲突事件,请输出 0。

输入样例

1
2
3
4
5
6
7
4 6
1 4 2534
2 3 3512
1 2 28351
1 3 6618
2 4 1805
3 4 12884

输出样例

1
3512

解题思路

显然这是一个并查集

首先我们把输入记录下来,按照权值从大到小排个序

然后对于每一条关系,如果它们的祖先相同,就说明发生了冲突,此时直接输出 + return 0就好

否则就进行合并

如何合并?

根据“敌人的敌人就是朋友”的原则,我们维护一个Enemy[i]表示i的的敌人

然后对于每一个人,更新它的敌人(如果它的敌人目前没被更新过)

否则就合并另一个人和他的敌人

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXN = 20000 + 10;
const int MAXM = 100000 + 10;

struct Relative {
int x, y, weight;
} rel[MAXM];

int n, m, U[MAXM * 2], E[MAXN * 2];

inline void Init() {
for (int i = 1; i <= n; ++i) U[i] = i;
}

int Find(int x) {
if (x == U[x]) return x;
return U[x] = Find(U[x]);
}

void Union(int x, int y) {
x = Find(x), y = Find(y);
if (x == y) return;
U[x] = y;
}

bool stlCmp(Relative x, Relative y) {
return x.weight > y.weight;
}

int main(int argc, char *const argv[]) {
ios::sync_with_stdio(false);
cin >> n >> m;
Init();
for (int i = 1; i <= m; ++i) {
int x, y, w;
cin >> x >> y >> w;
rel[i].x = x;
rel[i].y = y;
rel[i].weight = w;
}
sort(rel + 1, rel + 1 + m, stlCmp);
for (int i = 1; i <= m; ++i) {
int x = rel[i].x, y = rel[i].y;
int fx = Find(x), fy = Find(y);
if (fx == fy) {
printf("%d", rel[i].weight);
return 0;
}
if (E[x] == 0) E[x] = y;
else Union(E[x], y);
if (E[y] == 0) E[y] = x;
else Union(E[y], x);
}
printf("0");
return 0;
}